

Advancing the management of water resources

North Central Tennessee - Water Supply Plan Modeling

August 27, 2010

Reliability Criteria

- Preserve 20% of storage in all historic droughts
 - To account for climate change, droughts more severe than those in the record, and inaccuracies in streamflow and precipitation estimates
- Invoke drought plan restrictions no more often than once every 7 10 years
- Firm yield analysis does not account for reserve storage, or for seasonal demand patterns and assumes that inflows are perfect

North Central Scenarios

- 1) Existing
- 2) Proposed drought plans, no transfers
- 3) Proposed drought plans & transfers
- 4) Structural alternatives

Use 2030 demands for all scenarios

North Central Schematic

Existing scenario

- Simulate existing storage and operations for all utilities using 2030 demand levels
- No transfers except 'normal' transfers
 - Gallatin to Westmoreland & Castalian/Bethpage
 - Westmoreland to Castalian/Bethpage
 - White House to Simpson Co., KY

Proposed drought plans scenarios

- Simulate existing storage and operations for all utilities using 2030 demand levels
- No transfers except 'normal' transfers
- Portland adheres to proposed drought plans based on storage levels in own system
 - Stage 1 demand reductions = 10%
 - Stage 2 demand reductions = 20%

Proposed drought plans & transfers scenarios

- Simulate existing storage and operations for all utilities using 2030 demand levels
- Emergency transfers allowed
 - White House to Portland transfers triggered by creek flows & storage levels
- Portland adheres to proposed drought plans based on storage levels in own system
 - Stage 1 demand reductions = 10%
 - Stage 2 demand reductions = 20%

Structural alternatives

- Simulate proposed structural alternatives using 2030 demand levels
 - Caney Fork Creek Reservoir

North Central alternatives summary

Scenario	Meets storage objective?	Meets frequency objective?
Existing	No	n/a
Proposed drought plan	No	No
Proposed drought plan & transfers	Yes	Yes
Caney Fork Creek Reservoir	Yes	n/a

Existing scenario

Utility	Below 20% once every	Max # days below 20%	Min. Storage
Portland – City Lake	27 yrs	98	0 MG 0%

Portland proposed drought plan & transfers scenario

- Transfer from White House to Portland
 - Daily transfer volume is amount of Portland's demand in excess of full treatment capacity (3.0 mgd)
 - Otherwise transfer 20% of demand when there is not sufficient flow in WF Drakes Creek and City Lake is below full
- Portland drought plan
 - Stage 1
 - Trigger = 70% usable storage remaining
 - Demand reduction = 10%
 - Stage 2
 - Trigger = 50% usable storage remaining
 - Demand reduction = 20% (total)

Portland proposed drought plan & transfers scenario

Below 20% once every	Max days below 20%	Min. Storage	Ph. 2 events once every	Ph. 3 events once every	Max # days in restrict- ions
Never	Never	22 MG (26%)	27 yrs	80 yrs	151

Portland proposed drought plan & transfers scenario

# Transfer events once every	Avg/Max # days with transfers	Avg/Max amount transferred
< 1 year	27 / 89	0.10 / 0.77 MGD

Transfers by month, proposed drought plan & transfers scenario

Caney Fork Creek Reservoir alternative

- Ran 2030 existing scenario w/ new reservoir
 - No drought plan, no transfers
- Results
 - No shortages
 - Storage never drops below 20%

- Could maintain a constant minimum flow of
 3.85 cfs downstream of the WF Drakes intake
 - 2.2 mgd min. release downstream of the reservoir

Questions / Discussion

Extra slides

City Lake

